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Spectral reflectance curves to distinguish soybean from
common cocklebur (Xanthium strumarium) and sicklepod
(Cassia obtusifolia) grown with varying soil moisture
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Experiments were conducted to examine the use of spectral reflectance curves for
discriminating between plant species across moisture levels. Weed species and soy-
bean were grown ar three moisture levels, and spectral reflectance data and leaf water
potential were collected every other day after the imposition of moisture stress at §
wk after planting. Moisture stress did not reduce the ability to discriminate between
species. As moisture stress increased, it became easier to distinguish between species,
regardless of analysis technique. Signature amplitudes of the top five bands, discrete
wavelet transforms, and multiple indices were promising analysis techniques. Dis-
criminant models created from data set of 1 yr and validated on additional data sets
provided, on average, approximately 80% accurate classification among weeds and

crop. This suggests that these models are relatively robust and could potentially be
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used across environmental conditions in feld scenarios.
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Producers could save time and money while decreasing
the amount of pesticide released into the environment by
applying herbicides site specifically. Weeds most often do
not grow uniformly across the field but rather grow in ag-
gregated patches (Cardina et al. 1997). To manage weed
populations site specifically, fields must be sampled relatively
intensively. The degree to which fields must be sampled for
site-specific herbicide application to be effective is currently
cost- and time prohibitive (Clay et al. 1999). Remote sens-
ing is a tool that can be used to help identify weed infes-
tations. The accuracy with which ground, aerial, and satel-
lite sensors can measure targets in the field is constantly
increasing (Thenkabail 2002). For this technology to be
valuable in a variety of circumstances and locations, it is
necessary to discriminate between weeds and crop under a
variety of conditions. The degree to which moisture stress
influences our ability to discriminate among weed species
and the crop is relatively unknown.

Considerable research has been conducted on the use of
remote sensing to monitor moisture content of vegetation
(Ceccato et al. 2001; Curran et al. 2001; Danson et al.
1992; Gond et al. 1999; Hardy and Burgan 1999; Hunt
and Rock 1989; Moran et al. 1994; Pefiuelas et al. 1993;
Steinmerz et al. 1990; Unganai and Kogan 1998). Remote
sensing has also been used to assess the moisture status of
vegetation to predict the likelihood and intensity of forest
or rangeland fires (Roberts et al. 1993, 1997). Cohen (1991)
used vegetation indices to estimate leaf water potential
(LWP) and relative water content. The bands that com-
prised these indices were the Thematic Mapper (TM) bands.
The bands that were most useful in identifying stress were
TM5 (1.55 t0 1.75 pm) and TM7 (2.08 to 2.35 pm).
These bands were composed of broad portions of the elec-
tromagnetic spectrum. The indices created from these bands
were suitable for use in predicting stress or accumulated ef-
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fect of moisture deprivation; yet, they were not useful in
diagnosing fluctuations in water content of vegetation. Al-
though a majority of the indices published in the literature
tend to focus on the visible region of the electromagnetic
spectrum, Danson et al. (1992) suggest that the near infra-
red (NIR) and midinfrared region may also be useful to
assess moisture status of vegetation. The particular region of
the electromagnetic spectrum from which these portions of
data are gathered to create the indices, as well as the band-
widths, will determine the usefulness of the indices created.
For instance, Hardy and Burgan (1999) used the Normal-
ized Difference Vegetation Index (NDVT) to assess the moijs-
ture status of a grassy site composed of wheatgrass (Agro-
pyron canium L.), a shrub site composed of sagebrush (Ar-
temisia tridentare Nutt.), and an open forest site composed
of Douglas fir (Pseudotsuga menziesii Mirb.) and ponderosa
pine (Pinus ponderosa Douglas ex. Lawson). No significant
correlations were found between NDVI and vegetation
moisture.

Rouse et al. (1973) and Tucker (1979) were pioneers in
using portions of the electromagnetic spectrum in ratios
such as NDVI (NIR - red)/(NIR + red) to assess vegerta-
tion health and vigor. Because of the tendency for healthy
vegetation to absorb red light and reflect energy in the NIR,
vigorous plants will have a high NDVI value, Conversely,
as plant health declines, so does the ability to absorb red
light and reflect NIR; this scenario results in low NDVI
values signifying a decrease in plant vigor. A series of indices
commonly found in the literature were compiled and used
as classifiers (Table 1). Additional indices such as Soil-Ad-
justed Vegetation Index have been created that address issues
such as minimizing soil background interference (Huete
1988). With this concept of tailoring an index to address a
particular need, additional Drought Index of Normalized
Observations indices (Figure 1; Table 2) were designed to



Tapie 1. Indices used for assessing vegetative health and status.?

Indices Ratiosb References

RVI (NIR/Red) Jordan (1969)

NDVI (NIR — Red)/(NIR + Red) Rouse et al. (1973), Tucker (1979)

DV1 (NIR — Red) Lillesand and Kiefer (1987), Richardson and Everitt (1992)
NDVIg (NIR ~ Green)/(NIR + Green) Gitelson et al. (1996)

IPVI NIR/(NIR + Red} Crippen (1990)

MSI (TMS/TM4) Hunt and Rock (1989)

2 Abbreviations: DVI, Difference Vegetation Index; IPVI, Infrared Percentage Vegetation Index; MSI, Moisture Stress Index; NDVI, Normalized Differ-

ence Vegetation Index; NDVIg, NDVI green; RVI, Ratio Vegetation Index;

TM, Thematic Mapper.

b Green, 545 to 555 nm; red, 670 o 680 nm; NIR, 835 ro 845 nm; TM4, 760 to 900 nm; and TMS, 1,550 to 1,750 nm.

maximize differences apparent in specific regions of the elec-
tromagnetic spectrum between moisture-stressed treatments
and well watered controls. Other studies have also suggested
that the short-wave infrared (1,400 to 2,500 nm) is largely
influenced by plant water status (Gausman 1985; Tucker
1980).

Not only is the type of vegetation index chosen to eval-
uate the data important, the selection of leaves and the dif-
ferences in maturity among those leaves is also significant
(Patakas and Noitsakis 2001). Allen et al. (1998) suggest
that environmental factors other than wind and temperature
may contribute to the leaf water status of the plant. For
example, elevated COj; causes stomatal conductance decreas-
es, thereby increasing overall LWP of soybean. Pefiuelas et
al. (1993) noted that spectral signals signifying drought
stress were more evident at the canopy level than at the leaf
level. The highest correlation coefficients among the water

status indices were observed in the species that lost cell wall
elasticity in response to drought stress, suggesting that leaf
architecture and structural effects caused by the canopy ori-
entation may strongly influence ability to detect moisture
status.

Not only will remote sensing be used to distinguish be-
tween species within a constant moisture level bur also will
be used across a range of moisture conditions in fields with
variable elevation and soil textures. There is spatial variabil-
ity with respect to moisture status within a field, as well as
temporal variability. A rainfall event could drastically change
the moisture status within a field, as could irrigation. If
remote sensing can be used to distinguish between weeds
and crops across a variety of moisture levels, this could be
an important first step in demonstrating the usefulness of
remote sensing in weed discrimination across environmental
conditions.
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Figure 1. Drought indices of normalized observations were compiled from multiple regions* of the electromagnetic spectrum including drought-sensitive

areas between 1,500 and 2,500 nm.
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Active light source

Leaf of interest
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The leaf was positioned on a flat black background
and the bare-fiber sensor was connected within the
active light-source unit so that the sensor was
positioned approximately 5 cm directly above the leaf.

\

Black background

Example image

Figure 2. Data collection used an active light source for measuring individual leaves positioned on a black background.

neath the leaf was used to eliminate background effects.
Once reflectance of the leaf was measured, this leaf was re-
moved from the plant and the IWP measurements were
measured with a pressure chamber.? Leaf area was also re-
corded with a leaf arca meter® on several sampling dates
throughout the experiment. Green weight and oven-dry
weight were both recorded, and nutrient analyses were also
performed at the beginning (September 10), middle (Sep-
tember 17), and end (Ocrober 2) of the 2000 experiment.
These spectral reflectance measurements were collected in
the spectral range of 350 to 2,500 nm. This resulted in
2,151 individual spectral bands for each spectral reflectance
curve, with a bandwidth of 1.4 nm between 350 and 1,000
nm and 1.0 nm between 1,050 and 2,500 nm. Spectral
responses potentially suggesting moisture stress were ana-
lyzed and pertinent features were extracted using indices,
signature amplitudes (SA), and wavelet transforms.

Spectral Data Analysis

Spectral reflectance data were analyzed with SA, discrete
wavelet transforms (DWT) (both with and without linear
discriminant analysis [LDA]), and indices to determine the
utility of these analysis techniques for discriminating be-
tween species grown at no moisture stress {100% moisture),
moderate moisture stress (60% moisture), and high moisture
stress (40% moisture).

Nutrient analyses were performed three times: early (Sep-

tember 9 to 10), middle (September 17), and late (October
2) throughout the summer of 2000. Across species, none of
the nutrient analyses were found to be positively or nega-
tively correlated beyond 0.62 with LWP (data not shown).

SA analysis uses a subset of the spectral bands as features.
Because 2,151 reflectance values are available to be used as
classification features, it is computationally efficient to select
a subset of bands (top five bands) on the basis of discrimi-
nant capability. Receiver operator characteristics (ROC)
analysis was used to determine the efhicacy of each band as
a potential classification feature. ROC analysis used in this
study assumes that the two classes’ features have Gaussian
distributions. The area under the ROC curve ranges from
0.5 to 1.0, with 0.5 representing features not useful in clas-
sification (exact overlap of the two classes distribution
curves) and 1.0 corresponding to ideal classification features
(no overlap between distribution curves) (Hanley and
McNeil 1982). The second of these three techniques in-
cluded extracting DWT from the hyperspectral response
data and using these as classification features. Recently, the
energies of the DWT coefficients have been used as classi-
fication features (Huang et al. 2001). However, in this study,
classification features are a subset of the DWT coefficients.

The area under the ROC curve was used as a design
parameter for choosing a subset of spectral bands to use as
classification features. The reflectance values for the wp Ave
bands (largest area under the ROC curve) of the original

Henry et al.: Species discriminarion under varying moisture * 791



TasLe 3. Signature amplitude 2000 classification accuracies between so

likelihood with ROC? curve analysis.

ybean and weed species across moisture levels using maximum

Soybean vs. common cocklebur

Soybean vs. sicklepod

Moistureb DASe Soybean Common cocklebur Overall Soybean Sicklepod Overall
%

HS 1 100 100 100 100 100 100
3 100 100 160 100 89 94
5 88 89 88 100 100 100
7 89 100 94 100 100 100
8 100 160 100 89 100 94

MS 1 160 100 100 100 100 100
3 100 100 100 100 100 100
5 88 89 88 100 89 94
7 100 89 94 100 100 100
8 88 89 88 100 89 94

NS I 78 78 78 78 50 65
3 100 100 100 100 89 94
5 100 78 88 100 89 94
7 100 100 100 100 78 88
8 100 89 94 89 89 89

2 Abbreviation: ROC, receiver operator characteristics.

b Moisture: HS, high stress (40% moisture); MS, moderate stress (60% moisture); NS, no stress (100% moisture).
¢ Abbreviation: DAS, days after stress, number of days after the imposition of moisture stress.

position were then subjected to ROC analysis, and five co-
efficients with the largest area under the ROC curve were
chosen. LDA was then applied to form the optimum scalar
feature. This scalar was then input into a maximum-likeli-
hood classifier. Cross-validation was used for the system
training and testing.

The third analysis technique was indices that were used
as features in traditional statistical classification procedures.
These analysis procedures were conducted with stepwise dis-
criminant analysis procedure? using cross-validation (leave-
one-out testing) in all instances.

Tasre 4. Discrete wavelet transform 2000 classification accuracies

likelihood with ROC? curve analysis.

Results and Discussion

Tables 3 and 4 present classification dara using both SA
and DWT across moisture levels in 2000. These data were
collected 1 through 8 DAS. In 2000, SA, DWT, and indices
were all effective tools to discriminate between species across
all moisture levels, providing better than 80% discrimina-
tion between weeds and soybean, regardless of moisture level
(Tables 3~5). In 2000 and 2001, as the moisture stress level
increased from no siress to high stress, classification accu-
racies with indices combinations also increased from an av-

between soybean and weed species across moisture levels using maximum

Soybean vs. common cocklebur

Soybean vs. sicklepod

Moistureb DASe Soybean Common cocklebur Overall Soybean Sicklepod Overall
%

HS 1 89 78 33 100 89 94
3 89 89 89 89 89 89
5 100 89 94 75 78 77
7 100 100 160 89 89 89
8 100 100 100 89 100 94

MS 1 100 100 100 106 100 100
3 89 89 89 78 67 72
5 100 100 100 100 89 94
7 89 78 83 100 89 94
8 100 78 88 , 100 100 100

NS 1 89 100 94 78 63 71
3 100 100 100 100 89 94
5 75 22 47 75 89 82
7 100 100 100 100 100 100
8 100 89 94 78 89 83

* Abbreviation: ROC, receiver operator characteristics.

b Moisture: HS, high stress (40% moisture); MS, moderate stress (60% moisture); NS, no stress (100% moisture).
¢ Abbreviation: DAS, days after stress, number of days after the imposition of moisture stress.
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Taete 7. Comparison of multiple species both within moisture
levels and across moisture levels using pooled data from 2000 and
2001 wich linear discriminant functions created from multiple in-

dices.

Common
Moisture*  Soybean cocklebur | Sicklepod Overall
%

e Within moisture level
HS 94 86 91 91
MS 92 88 89 91
NS 83 90 85 86

e —— Across moisture levels
All 89 90 89 89

* Moisture: HS, high stress (40% moisture); MS, moderare stress (60%
moisture); NS, no stress (1009% moisture).

varying leaf moisture levels. These data and conclusions con-
cerning leaf reflectance set the groundwork for future re-
search that should investigate the degree to which canopy
architecture and wilting affect reflectance. They also dem-
onstrate the promise for using remote sensing to correctly
discriminate patches of weeds so that they may be treated
site specifically.

In summary, moisture stress does not decrease the ability
to discriminate between species. As moisture stress increased,
it became easier to distinguish between species, regardless of
analysis technique. SA (top five band) analysis was a prom-
ising technique because of its accuracy and computational
simplicity. These data, when pooled and analyzed across
years, suggest that moisture level, at least at the leaf level,
does not decrease the ability of remote sensing to discrimi-
nate between weeds and soybean. The potential for discrim-
inating weeds from soybean with hyperspectral data is prom-
ising and appears not to be diminished by changes in re-
flectance caused by varying leaf moisture status.

These data analysis techniques should now be applied to
field data. From an applied perspective, regardless of analysis
technique, soybean was correctly discriminated from weed
species better than 85%, on average. It will be interesting
to sce how well these analysis techniques perform when ap-
plied to field data. Possible limitations in the application of
these techniques would include pixel mixing, background
interference from soil, variability in the intensity of sunlight,
and canopy architecture effects. Limitations to this end
would include early-season measurements in which vegeta-
tion (both weeds and soybean) covers only a small portion
of the ground. It will be challenging to discriminate between
weeds and soybean if only a small percentage of the image
comprises vegetation. Soil will contribute substantially to
the image, and the variability within soil types will become
a component of the image-interpretation process that must
be addressed. With the ever increasing spatial and spectral
resolution and the computationally intense algorithms to
discriminate pixel classes, there exists the potential for these
analysis techniques to be beneficial to the producer. One of
the promising findings from this research is that leaf-level
reflectance can be used to separate soybean from weed spe-
cies, regardless of moisture status of leaves.

Sources of Materials

' ASD FieldSpec Pro FR, Analytical Spectral Devices Inc., 5335
Sterling Drive, Boulder, CO 80301-2344.
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23000 Plant Water Status Console, Soilmoisture Equipment,
801 South Kellogg Avenue, Goleta, CA 93117.

3LI-3100 Laboratory Area Meter, LI-COR Biosciences, 4421
Superior Street, Lincoln, NE 68504,

# SAS, SAS Institute Inc., SAS Campus Drive, Cary, NC 27513.
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